Efficient 3D Face Recognition with Gabor Patched Spectral Regression

نویسندگان

  • Yue Ming
  • Qiuqi Ruan
  • Xueqiao Wang
چکیده

In this paper, we utilize a novel framework for 3D face recognition, called 3D Gabor Patched Spectral Regression (3D GPSR), which can overcome some of the continuing challenges encountered with 2D or 3D facial images. In this active field, some obstacles, like expression variations, pose correction and data noise deteriorate the performance significantly. Our proposed system addresses these problems by first extracting the main facial area to remove irrelevant information corresponding to shoulders and necks. Pose correction is used to minimize the influence of large pose variations and then the normalized depth and gray images can be obtained. Due to better time-frequency characteristics and a distinctive biological background, the Gabor feature is extracted on depth images, known as 3D Gabor faces. Data noise is mainly caused by distorted meshes, varieties of subordinates and misalignment. To solve these problems, we introduce a Patched Spectral Regression strategy, which can make good use of the robustness and efficiency of accurate patched discriminant low-dimension features and minimize the effect of noise term. Computational analysis shows that spectral regression is much faster than the traditional approaches. Our experiments are based on the CASIA and FRGC 3D face databases which contain a huge number of challenging data. Experimental results show that our framework consistently outperforms the other existing methods with the distinctive characteristics of efficiency, robustness and generality.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Face Recognition Using Patched Locality Preserving Projections

A novel Patched Locality Preserving Projections for 3D face recognition was presented in this paper. In this paper, we firstly patched each image to get the spatial information, and then Gabor filter was used extract intrinsic discriminative information embedded in each patch. Finally Locality Preserving Projections, which was improved by Principle Components Analysis, was utilized to the corre...

متن کامل

3D Gabor Based Hyperspectral Anomaly Detection

Hyperspectral anomaly detection is one of the main challenging topics in both military and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also improve the discrimination between anomalous targets and background. Most studies miss the wort...

متن کامل

Pose-Invariant Face Recognition in Hyperspectral Images

Pose-invariant face recognition remains a challenging problem, especially when the pose change is large. Previous studies use either spatial or spectral information to address this problem. In this paper, we propose an algorithm that uses spatial and spectral information simultaneously to deal with large pose changes. We first learn 3D models from 2D images. We then use these 3D models to gener...

متن کامل

تشخیص چهره با استفاده از PCA و فیلتر گابور

Methods for face recognition which are based on face structure are among techniques without supervision and produce unfavorable results in the presence of linear changes in images. PCA is a linear transform and a powerful tool for data analysis but does not produce good results for face recognition when there are non-linear changes resulting from changes in position, intensity and gesture in th...

متن کامل

Spectral Regression dimension reduction for multiple features facial image retrieval

Face retrieval has received much attention in recent years. This paper comparatively studied five feature description methods for face representation, including Local Binary Pattern (LBP), Gabor feature, Gray Level Co-occurrence Matrices (GLCM), Pyramid Histogram of Oriented Gradient (PHOG) and Curvelet Transform (CT). The problem of large dimensionalities of the extracted features was addresse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computing and Informatics

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2012